If it's not what You are looking for type in the equation solver your own equation and let us solve it.
7n^2+19n+10=0
a = 7; b = 19; c = +10;
Δ = b2-4ac
Δ = 192-4·7·10
Δ = 81
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$n_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$n_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{81}=9$$n_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(19)-9}{2*7}=\frac{-28}{14} =-2 $$n_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(19)+9}{2*7}=\frac{-10}{14} =-5/7 $
| 7(9+2x)=175 | | 7x÷7=95 | | 3.75x+1=12.25 | | (3x-5)(x+2)=-6 | | -3.5=v-0.2 | | 6(-7x-1)=-342 | | 3y-20+30+y=180 | | -.25(x-4)=-2 | | 9x+30=24 | | 5(6-x)=70 | | 2(h-11)-1=3 | | -1=4-m | | 7y+y=33 | | -8q+10q=-10 | | 2.3x=2.76 | | -15j+15j+-2j=12 | | 2y+37=69 | | 0=-8t+15 | | -13j+15j=-14 | | -16+m=-32 | | n+2=30-4 | | m-14=-31 | | -12+n=-30 | | 5y−4=3y+2 | | 12^2x=144 | | b+7=-10 | | 3/4(x–12)=12 | | 2x−9 =4 | | 8=a+14 | | 250=125/5x | | -7+2k=k+8 | | .5x^2=13.5 |